Logarithmic Spiral-based Construction of RBF Classifiers
نویسندگان
چکیده
Clustering process is defined as grouping similar objects together into homogeneous groups or clusters. Objects that belong to one cluster should be very similar to each other, but objects in different clusters will be dissimilar. It aims to simplify the representation of the initial data. The automatic classification recovers all the methods allowing the automatic construction of such groups. This paper describes the design of radial basis function (RBF) neural classifiers using a new algorithm for characterizing the hidden layer structure. This algorithm, called k-means Mahalanobis distance, groups the training data class by class in order to calculate the optimal number of clusters of the hidden layer, using two validity indexes. To initialize the initial clusters of k-means algorithm, the method of logarithmic spiral golden angle has been used. Two real data sets (Iris and Wine) are considered to improve the efficiency of the proposed approach and the obtained results are compared with basic literature classifier Keywords—Radial Basis Function neural network; classification; k -means; validity index of Davis Bouldin; Mean Squared Error; Mahalanobis distance; Logarithmic spiral; golden angle; golden ratio
منابع مشابه
Construction of RBF Classifiers with Tunable Units Using Orthogonal Forward Selection Based on Leave-one-out Misclassification Rate [IJCNN1219]
An orthogonal forward selection (OFS) algorithm based on leave-one-out (LOO) misclassification rate is proposed for the construction of radial basis function (RBF) classifiers with tunable units. Each stage of the construction process determines a RBF unit, namely its centre vector and diagonal covariance matrix as well as weight, by minimising the LOO statistics. This OFS-LOO algorithm is comp...
متن کاملA general approach to construct RBF net-based classifier
This paper describes a global approach to the construction of Radial Basis Function (RBF) neural net classifier. We used a new simple algorithm to completely define the structure of the RBF classifier. This algorithm has the major advantage to require only the training set (no step learning, threshold or other parameters as in other methods). Tests on several benchmark datasets showed, despite ...
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کاملOn the construction of extreme learning machine for online and offline one-class classification - An expanded toolbox
One-Class Classification (OCC) has been prime concern for researchers and effectively employed in various disciplines. But, traditional methods based one-class classifiers are very time consuming due to its iterative process and various parameters tuning. In this paper, we present six OCC methods and their thirteen variants based on extreme learning machine (ELM) and Online Sequential ELM (OSEL...
متن کاملOn Neural Network Classifiers with Supervised Training
A study on classification capability of neural networks is presented, considering two types of architectures with supervised training, namely Multilayer Perceptron (MLP) and Radial-Basis Function (RBF). To illustrate the classifiers’ construction, we have chosen a problem that occurs in real-life experiments, when one needs to distinguish between overlapping and Gaussian distributed classes. An...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017